
- AD-A247 206

Curve Fitting Using Genetic Algorithms

DISFEBQ
K. Messa
Loyola University
Department of Mathematical Sciences
New Orleans, LA 70118

M. Lybanon
Remote Sensing Branch
Ocean Sensing and Prediction Division
Ocean Science Directorate

92-04806

Approved for public release; distribution is unlimited. Naval Oceanographic and Atmospheric
Research Laboratory, Stennis Space Center, Mississippi 39529-5004.

Foreword

The principle of least squares is applied in every field of science
and engineering, but least-squares algorithms often suffer from
convergence problems in complex applications. The present work
was motivated by the difficulty encountered in fitting a mathematical S
model to altimetric sea-surface height residuals. The presence of
mean dynamic topography in the reference surface used to calculate
the residuals leads to significant difficulty in interpretation. The
goal of the fitting of a mathematical representation is the estimation
and subsequent removal of the error. However, standard least- 0
squares procedures have difficulty unless the initial estimates of
model parameters are very good.

This report describes research performed at the Naval Oceano-
graphic and Atmospheric Research Laboratory on the application
of genetic algorithms to the task of fitting mathematical models to
data. Genetic algorithms are search techniques that are based upon S
the mechanics of natural selection. They have been used successfully
in a number of optimization problems, but this is apparently their
first application to curve fitting. The genetic algorithm approach
is easily implemented, is accurate, and provides consistent results.
It also has application to curve-fitting problems in general, not
just to the problem that motivated the research. Therefore, this
new approach to least-squares curve fitting has the potential to
make a valuable contribution in a number of scientific fields.

0

W. B. Moseley L. R. Elliott, Commander, USN
Technical Director Commanding Officer 0

0

0

Executive Summary Genetic algorithms are search techniques based on the mechanics of
natural selection. They have been used successfully in many applications
because of their robustness and because of their ability to search in a
noisy problem space. In particular, genetic algorithms are used in curve-
fitting. The genetic algorithm selects the coefficients of a particular
curve that most closely n,.atches a given set of data.

Candidate solutions are vectors of real numbers that represent the
coefficients of the curve to be modeled. Thus, every candidate solution
corresponds to a new function. As such, each candidate solution is
evaluated using the sum of the squares of the residuals. The evaluation
of each of these curves with respect to its fit of the data guides the
genetic algorithm toward the solution with the greatest merit.

Several examples of the application of genetic algorithms to curve-
fitting problems are presented. Convergence to the optimal solution is
rapid when knowledge of the coefficients is available. When little
is known about the coefficients, a degree of experimentation helps obtain
the optimal solution.

Aaeession For

NTIS QRA&I V
DTIC TAB Li
Unannomoed Li
Just i1c0a.lo

By

Av3 11 1I t Cod5
-- iAvai a r tr

Dist Speolal

This research was supported jointly by Program Element 62435N, Acknowledgments
CDR Lee Bounds, Program Manager, and Program Element
63704N, LCDR William Cook, Program Manager. Kenneth Messa's
work was partially sponsored by the Naval Oceanographic and
Atmospheric Research Laboratory through the U.S. Navy/ASEE
Summer Faculty Research Program.

The mention of commercial products or the use of company names 0
does not in any way imply endorsement by the U.S. Navy or NOARL.

Contents I. Introduction 1

H. Representation 3

III. Fitness Function 4

IV. Genetic Operators 5

A. Selection 5

B. Crossover 5

C. Mutation 5

V. Experimental Results 7

VI. Conclusions/Summary 14

VII. References 14

W11

Curve Fitting
Using Genetic Algorithms

I. Introduction Techniques to fit curves to data are plentiful. Linear least squares/
regression is one of the more commonly used methods. There are also
nonlinear techniques that work well when the data set is small and
when the function is relatively simple. However, many of these tech-
niques often fail when large data sets are used or when complicated
functions need to be modeled. Singular value decomposition, QR*
decomposition, Marquardt's algorithm, and steepest descent techniques
are sometimes used. This report describes an alternate method of curve
fitting that can be used for complex functions and for large data sets
and that employs genetic algorithms.

Genetic algorithms are search techniques based on the mechaniLs of
natural selection. Genetic algorithms are related to "generate-and-test"
search techniques. In pure "generate and test," a candidate solution is
generated and then sent to an evaluator for testing. If the candidate solution
is not optimal, then the procedure is repeated. In genetic algorithms,
the generate-and-test procedure is repeated iteratively over a large set of
candidate solutions. Because this set can be large, a significant number
of possible solutions can be tested simultaneously. Holland (1975) refers
to this as implicit parallelism. Genetic algorithms seem to be unique
among optimization techniques in employing implicit parallelism.

The terminology of genetic algorithms is taken from genetics. Each
candidate solution is called an organism. A chromosome is a list of
elements called genes. In the simplest case, an organism consists of a
single chromosome (haploid), although there are cases when the
organism consists of dual-strand chromosomes (diploid). Chromosomes
usually consist of linear lists of genes. A gene can assume any of a
number of values called alleles, which are taken from the base set, for
example, 10, 1). Generally, problem solutions are encoded as strings of
alleles (most commonly, strings of O's and l's).

Many organisms are grouped together into a set called a population.
The genetic algorithm evaluates a population and generates a new one
iteratively. Each successive population is called a generation. Thus we
have an initial population, G(O), and for each generation G(t), the genetic
algorithm generates a new one, G(t+ 1). An algorithm to implement a
genetic algorithm is given by

generate initial population, G(0);
evaluate G(0);
t:= 1;
repeat

generate Gkt) using G(t- 1);
evaluate G(t);
t:= t + 1;

until solution is found.

*A method developed by Francis (1961: 1962) for finding the real and complex eigenvalues of
an arbitrary matrix.

Like all generate-and-test methods, the genetic algorithm requires
the two main steps of generation and evaluation. To evaluate a popu-
lation, a fitness function is needed. In nature, a species responds in
some way to environmental pressure. The genetic algorithm analog to
this pressure is the fitness function. The fitness function is built from
domain-specific information and returns the relative merit, or fitness,
of the organism.

The operation of generating a new population distinguishes the genetic
algorithm from the other techniques. To obtain the next generation,
pairs of organisms are selected based on their fitness. The pairs are S
combined to form new organisms that are added to the next generation.
This procedure is the genetic algorithm analog to "survival of the fittest."
As with population genetics, the pair selected are called the parents.
Their mating produces new organisms called offspring. Goldberg (1989)
discusses genetic algorithms in detail.

Genetic algorithms also differ in other ways from traditional search
and optimization methods:

* Genetic algorithms search large numbers of candidate solutions
simultaneously.

" Genetic algorithms are probabilistic-they use random search and/
or selection rather than deterministic methods. 0

" The objective function used by genetic algorithms is based on actual,
problem-specific information, rather than auxiliary information, such
as derivatives.

As is the case in natural selection, organisms that are highly fit mate
and produce offspring. On the average their offspring are more favorably
adapted than offspring of less highly fit parents. Generally, the offspring 5
of the highly fit are themselves highly fit, some even more so than their
parents.

The genetic algorithm is based on the same principle as natural selection.
The first operator used by genetic algorithms is called selection. Like
its natural selection counterpart, the selection operation selects pairs
of highly fit organisms for mating. This focus toward the highly fit
inc(ividuals is what drives genetic algorithms.

The genetic algorithm analogy to mating is called crossover. The
crossover operator provides a mixing of the genes from the parents, and
globally it mixes the genetic material of the whole population. It is the
mixing of the genes, the stirring of the pot of genetic material, that S
gives robustness to the genetic algorithm. The two organisms chosen by
sclection are combined to form a new individual with similarities to
both parents. If the mixing is done carefully, then a large amount of
genctic material can be tested. Although selection focuses on the genetic
alkorithm, it is crossover that adds variety.

The simplest version of crossover consists of randomly selecting a
single crossover point and then combining the left side of one parent
chromosome, up to the crossover point, to the right side of the other
parcnt chromosome (Fig.). In addition to the single-point crossover,
thcre are quite a few variations of the crossover operator. Each is designed
to produce a new offspring from the parents in such a way that the
offspring produced will further sample the solution space of organisms.

While selection and crossover are the chief operators used in genetic
algorithms, there are numerous other minor operators proposed to

2i Curve Fitting Using Genetic Algorithms

CHROM 1 00000000

Figure 1. Crossover of two binary-alleled X D OFFSPRING 1 11

chromosomes after the fifth gene was
selected at random as the crossover CHROM 2 [1 1 1 1 1 1 1: 1

points.

strengthen genetic algorithms under certain circumstances. For certain
applications, these minor operators can add to the genetic algorithm's
efficiency or prevent it from converging to a local optimum rather than
a global optimum. For example, it sometimes happens that the genetic
algorithm converges to a solution prematurely because crossover only
mixes the genetic material that is present in the initial population; it
does not introduce new material. In nature, new genes are introduced
into a species through mutation. Analogously in genetic algorithms, a
mutation, operator is used occasionally to modify a chromosome to add
new genes into the population and to prevent premature convergence.

De Jong (1975) observed the need to scale the fitness function values
of the organisms, since, as the genetic algorithm nears a maximum
value, most of the organisms will have fitness values that lie within a
very small range. Organisms whose fitness values are near the bottom
of this narrow range still have a fairly large probability of being selected
for mating. By scaling these low values to near 0, the probability of the
less fit being selected is markedly decreased. Scaling has become a
widely accepted practice. If an organism has a high fitness value, there
is a good probability that it will be selected for mating, thus contributing
its genetic material intc later generations. However, by chance, it may
not be selected, which could delay the genetic algorithm for several
generations in finding this individual again. To overcome this problem,
an elitist strategy could be used. This strategy allows a few of the fittest
organisms to be placed unchanged into the next generation.

II. Representation The organisms in a genetic algorithm represent solutions to the problem.
In this case, solutions are real values assigned to each coefficient in the
curve model. There is also a measurement of the goodness of fit with
respect to the data 0. Thus, iff=f(a 1 , a2, . . . a,; x) is the curve to
be fit, then real number values for the coefficients a,, a2, . . . , an are
searched for. Thus, vectors <r1 , r2, . . ., rn>, where ai is replaced by
real numbers ri, i = 1, 2, . . ., n, are candidate solutions. Therefore,
organisms for the genetic algorithm used in curve fitting are vectors of
real numbers, <r1 , r2 , . . . r,>.

This view of the representation is useful at the higher level of the
curve-fitting problem. However, the genetic algorithm works at a lower
level-the level of bits or alleles. To successfully use the genetic algorithm
consider a representation of the real numbers ri at the allele level.
Given upper and lower bounds for each ri, ui and li, respectively, we
can look at r, as an unsigned binary integer with m bits and calculate
its value with respect to li and ui.

Curie Fitting Using Genetic Algorithms 3

Given a binary integer b, where b is in [0, 2
k - 1], its corresponding

real value is given by the formula

r = b/2' * (u - i) + 1, (1) 0

where u and I are the upper and lower bounds, respectively. Combining
these two levels, a candidate solution is constructed:

0 = <bit b12 b3 . ..b ,,,, b2l b22 . ..b2, -.. . bill b,.2 . . .b.,>,

where each binary integer bit b,2 •. b. ,, corresponds to a real number
ri which lies in the interval [li, ui]. The correspondence is given in
equation 1.

Computing the value of the fitness function on a candidate solution
0 requires the two steps: converting each binary integer bil b, . . . b0
into its corresponding real value r. and then evaluating the curve
f=f(r1, r2,. . ., r.; x) at the data points of D.

The fitness function is a measurement of how well the candidate M. Fitness Function
solution fits the data. It is the entity that focuses the genetic algorithm 0
toward the solution. The fitness used in this problem is built in several
stages,

* The candidate solution 0 is converted into a vector of real numbers
r = <r 1, r2, . . ., r,> and the value of f(r; x) =f(r t , r2, ... r,.; x)
is calculated for each xi where the pair (xi, yi) is in !D.

* The sum of the squares of the differences between the f(r; xi) and
y, (that is, the residuals) yields a measurement where 0 indicates an
exact fit. This value is called the prefitness value of 0. Thus,

prefitness (0) = [. (f(r; xi) -yi) 2) , (2)

where the summation is taken over all data points (xi, y8) of D.
• Since genetic algorithms work by searching for maximum values

and since the prefitness function has its minimum for the best fit, max and
min must be reversed. For each population p, let maxp represent the largest
prefitness value (that is, the worst fit). (Also let avg. be the average of
the fitnesses of p.) Compute the raw fitness as the difference

raw fitness (0) = max, - prefitness (8). (3)

This computation is not precisely the fitness function used in the
genetic algorithm. Most genetic algorithms require a scaling of these 0
fircss values. Scaling amplifies the distinction between good and very
good organisms. In the simplest case, linear scaling was used:

fitness (0) = ra* raw fitness (0) + bP, (4)

where rp and b. are constants calculated for each population p.
Equations 3 and 4 can be combined to form a linear relationship between
the fitness and the prefitness functions:

4 Curve Fitting Using Genetic Algorithms

fitness (0) = a,* prefitness (0) + o 2 , (5)

where a, and a2 are derived constants for each population. Thus, the final
fitness of an organism 0 is linearly related to the sum of the squares of
the residuals.

IV. Genetic Operators The method used here is stochastic sampling without replacement,
A. Selection called "expected value" by Goldberg (1989). To implement this method,

given an organism 0 with fitness f , the fitness is weighted with respect
to the population's average f*. The truncated division of f, by f* yields
the expected number of offspring formed by 0. The expected number of
offspring of each organism in the population is calculated. Should any
slots in the new population be unfilled after this process is completed,
the fractional parts of each fitness, truncated by the previous division,
are used to determine remaining positions (De Jong, 1975).

In addition to this selection method, De Jong's elitist strategy
(De Jong, 1975) was used, whereby the single best organism from one
generation is placed unchanged into the next generation. This strategy
gives a little more weight to the best organism than might be achieved
from selection alone and prevents the possibility that the best organism
might be lost early through crossover or mutation.

B. Crossover Simple crossover was used and it worked effectively. For problems
with many coefficients or where many bits are needed for greater pre-
cision, two-point crossover yielded better results than single-point
crossover. Ninety percent of the selected pairings were crossed, and the
remaining 10% were added unchanged to the next generation. This. is
referred to as a 90% crossover rate.

C. Mutation The mutation method most commonly used is to change the value of
a bit at a gene position with a frequency equal to the mutation rate.
Numerous mutation rates were tested, but good results were found
infrequently while using the bit-change method. High mutation rates
have the effect of introducing a large amount of new material into the
population. Thus, good solutions were frequently found. However, a
high mutation rate also has the effect of frequently changing organisms,
including those that have a good fitness. So while high rates often find
good solutions, they tend to be disruptive to the population as a whole.
There were other times that, even with a high rate, the genetic algorithm
failed to find an acceptable solution. With low mutation rates, the genetic
algorithm also often failed.

A problem with this mutation method is related to the so-called
"Hamming cliffs" (Carruana and Schaffer, 1988). Suppose an optimal
coefficient has value of 0.5 and is represented as 100000 using 6-bit
binary integers and a boundary interval of [0, 1]. A candidate solution
of 011111 (= 0.46875) might yield fairly good results because of its
nearness to the optimum. However, once the genetic algorithm has begun
converging to this suboptimal value, it is very unlikely for it to move
away from this near-optimal solution toward a better solution. Only

Curve Fitting Using Genetic Algorithms

cha, ing a single bit or two would never enable a population of such
organisms to move to the optimal solution.

Instead of the bit-change mutation, a method that adds a real value
c to (or subtracts it from) the organism's converted value was 0
introduced. The value E is a power of 2 ranging from 1 to 2'".
If Ei =0.. . 0 1 0. . .0 with I in the ith position and O's elsewhere,

then this mutation method adds £ to (or subtracts F from) the organism
to be mutated, where e is in (Cl, E2, ,r). We will refer to this
method of mutation as ±.

The method proceeds as follows: If randomness has determined that
the allele in the relative position i (the ith gene of some coefficient in
0) is to be mutated, then Ci is either added to or subtracted from 9. If
the ith gene is 0, then adding £i is identical to a bit change. Or if the ith
gene is 1, then subtracting ei is just the bit-change mutation. The
improvement in this method over bit-change mutation occurs when C is 0
added to a gene with value of I (or subtracted from a gene with a value
of 0). Given the example referred to, adding 1 to the sixth gene in
0 11111 yields the optimal value of 100000.

These two mutation methods are compared in Table 1. The results
are from two runs; one run uses a genetic algorithm with bit-change
mutation, and the other uses the same genetic algorithm parameters, but
with ± mutation. The runs were chosen because their initial populations
had similar best organisms. The values listed are the errors in the fit of
each curve. The error used here is the square root of the prefitness
value of the organism. That is, error (0) = SQRT(X (f(r; xi) -yi) 2),
where 6 = <r> and (xi, yi) range over D. Results were taken from 0
Problem I (Section V) for illustration purposes here. In this case, the
ideal organism was predetermined to have error of 0.411911.

As can be seen, both methods allow convergence toward the optimum
value. However, the bit-change mutation method often does not approach
the optimum as rapidly because of the Hamming cliffs.

The ±c mutation allows faster convergence than bit-change mutation
in seveal runs with otherwise identical genetic algorithm parameters.
Therefore. not only does ±E provide better accuracy, it reaches its answer
faster. Since the ideal organism has an error of 0.411911, a value of
0.42 was chosen as the threshold for measuring convergence (Table 2).
Note that convergence in Problem I was measured by comparing the
error to the threshold. Only in this case was the ideal organism known
in advance. This luxury was not present in the other problems.

Table 1. Comparison of errors of best Table 2. Generation in which best
organisms from each generation, organism had an error less than

Bit Change vs. Mutation Techniques 0.42.

Convergence Comparison
Generation Rit Change IE of Bit Change and ±c Mutation

0 2 097375 2074479 Run Bit Change ±c
10 0.663834 0412049 1 18 6
20 0530236 20412039

30 0427454 0411977 3 44 s

40 0421900 0411972

50 0418273 0411947 'Did not reach the 0.42 threshold
in 50 generations.

Curve Fitting Using Genetic Algorithms

For the simpler problems, the ±E mutation method was used. However,
decaying mutation worked better for more complex problems. Decaying
mutation proceeds as follows:

Let E = (eI, 2, . . . , E,) be as described above. Initially, E is chosen
at random from !E After some specified number of generations (for
example, 10 or 20), choose E from E- {e). Later, choose £ from
E- {E, E2)..... In this manner, the change affected by ± is declining
over time. The frequency of change remains fixed, but the degree of
change is gradually reduced. This method improved convergence,
especially when looking at the average of the population rather than the
best organism.

The solution for Problem 1 uses the original fixed ±E, while other
solutions use the decaying version. However, when convergence is rapid,
as it is with Problem 1, the two methods are essentially identical. Hence,
references to ±E will be that of the decaying version.

There are several approaches to genetic algorithm convergence. One
approach examines the best organism in the population; another uses
the average of the population. Holland (1975) refers to two other
approaches, where the best of all the generations are averaged (offline)
or the average of all the generations are averaged (online). If p, is the
population of generation t, then

offline (Pt) =11t I max p, (6)

and

online (p,) = lit 2" avgp,,, (7)

where the summation is taken over all generations n = 1, 2, t.
Since the goal is to find the best fit for a curve, attention is generally
restricted to the best of the generations so far. However, the errors of
the best and the average of several generations are compared (Figs. 2
and 3).

A sustained error at a certain value could indicate convergence.
Convergence is faster using the best of each generation, since it may
take several generations for the average of a population (hence, almost
all the members) to be near the optimal value. Convergence is more
uniform using the average of the generations. If the best of the genera-
tions is used, then a suboptimal organism may stand out for several
generations before a better organism is found. If the population is thought
to have converged at this suboptimal value, then the genetic algorithm
may be stopped prematurely before the optimal organism has a chance
to emerge. Table 3 for a comparison of these concepts.

V. Experimental Results Population size was kept at 100 for all except the most complex
functions. For these, convergence was too slow and a larger population
of 200 improved performance considerably.

The mutation rate adopted was 1% for the examples below. Scaling
was crucial, since so many prefitness values were near each other.
The fitness of an organism is the new value after scaling is applied

Curve Fitting Using Genetic Algorithms

06 -

0.5 "

r-0.4
2 RUN#1 I

0.3 - RUN# 2

02
RUN #3

0.1 1 1 Figure 2. Error (square root of prefaness)

0 10 20 30 40 50 60 of the best of each generation. The ideal
GENERATION NUMBER organism has value 0.1697.

5-

4

0 GENRAIO NUBRgnrto.Ielvlei .67

2 - i RUN#1

' It RUN #2 ---

0 10 20 30 40 50 60 Figure 3. The average error from each S
GENERATION NUMBER generation. Ideal value is 0.1697.

Table 3. Generation at which the threshold Is
maintained.

Comparison of Using 'Best of Generation"
and 'Average of Generation" for Convergence

Run Best Avg. Best Avg.

1 6 40 19 74

2 40 54 78 91

3 5 43 28 77

Threshold: 0.42 Threshold: 0.412

to the raw fitness value. See equation 4. For the problems in this analysis,
scaling proceeded as follows: After the raw fitness of each organism in
a population p was calculated, the average raw fitness avg. was computed. 0
For any organism with a value equal to avg,, scaling made no change.
Likewise, for organisms whose raw fitnesses were less than avg,, no
change was made. The organism with the largest raw fitness maxp was
scaled to avgp* scale-factor, where scalejactor is a predetermined
parameter. Organisms with values intermediate between avg, and max,
are scaled proportionately. Thus,

r rawfitness (0), if raw_fitness (0) <avgp
fitness (0) lmp* rawfitness (0) + b,, otherwise, (8)

where mp and b. are from equation 4. To achieve the accuracy desired,
very large scale factors were needed. They ranged from 1,000 to 100,000.

8 Curve Fitting Using Genetic Algorithms

10

8

6

4

2

0-
Figure 4. Linear function which best fits
the data set from Problem 1. 0 1 2 3 4 5 6

Table 4. Generation at which the threshold is maintained.

Convergence Comparisons Based on the Width of the
Domain Intervals

Best of Each Generation

Run Interval Width Interval Width

2 16 2 16

1 3 19 1 6
2 37 76 3 40

3 10 26 6 5
Average 17 40 3 17

Threshold - 0.412 Threshold - 0.42

The first example is designed to illustrate only the concepts. Should
a problem of this simple genre be encountered, other more traditional
strategies, such as least squares regression, might be employed to solve
it. However, the model described here works well.

Problem 1. Given the data D = ((1.0, 0.0), (2.01, 2.15), (3.08, 4.14),
(4.22, 6.08), (5.0, 8.17)) find the linear function f= Ax + B that fits D
most closely (Fig. 4).

The genetic algorithm used in curve fitting requires bouns for the
coefficients. If the length of the boundary interval is sm dil, then
convergence is generally rapid. For larger intervals, convergence proceeds
more slowly. In this problem, the answers were known in advance:
-A = 2.0 and 8 = -2.0. By choosing intervals [1,3) and [-3,-1] for A
and B, respectively, very rapid convergence is obtained. For the wider
interval [-8, 8], convergence is somewhat slower (Table 4).

Assume that A and B lie within the boundary interval [-8,8]. The
number of bits assigned to the representation is a function of the interval
width and the degree of precision needed. The representation of
the solution was somewhat arbitrarily chosen as 24 bit integers. This
number gave the accuracy to the fifth decimal position. For
example, 1010100 . . . 0 would represent 2.5 (calculated from
0.65625*16-8) and -5.75 would be represented as 00100100. . . 0
(as 0.140625*16 - 8).

Since the curve to be fitted is linear, the results can be compared to
the solution using linear regression (Table 5).

Curve Fitting Using Genetic Algorithms 9

20-

100

.0

00
20 - 1 1 Figure 5. Cubic polynomial which best

-4 -2 0 2 4 fits the data set from Problem 2. 0

Table 5. Comparison of several genetic algorithm methods to linear
regression.

Comparison of Several Curve Fitting Methods
Best of the 50th Generation

Method A B Error

Regression/Least Square 1.97852 -1.95024 0.411911

Genetic Algorithm/Small Intervals 1.97849 -1.95012 0.411948
Genetic Algorithm/Large Intervals 197860 -1.95047 0.411945
Genetic Algorithm/Large Intervals' 1.97853 -1.95028 0.41194 •

'100 generations

Table 6. Results of three runs of genetic algorithm on
the cubic equation f,, Ax 3 + Bx2 + Cx+ D and the data
from Figure 5.

Coefficients Found by Genetic Algorithm Using ::e Mutation

Best of Each Generation

Coefficient Run I Run 2 Run 3

A 0.499999 0.500000 0.500000
8 0.249999 0.250000 0.250000 0
C 0.250008 0.250000 0.249999
D 0.749999 0.749999 0.750000
Error 2.14 E-5 5.05 E-6 5.05 E-6

Even though the results in Table 5 are the best of several runs, the
worst results are not far off either. When allowed to run to 100 genera-
tions, all three runs returned the same error: 0.411944.

Problem 2. The seven data points pictured in Figure 5 lie roughly on
a cubic, f= Ax3 + Bx 2 + Cx + D. Find the coefficients that yield the
best fit.

The solution to this problem is approached by using the same parameters 0
and strategies as those of Problem 1, except simple crossover with
2 points and decaying ±E mutation is employed.

The coefficients and the resulting error were found by three runs of
300 generations each. The genetic algorithms converged quite rapidly
to reasonably good answers; however, the area of interest was in a
greater degree of accuracy than they achieved at first (Table 6).
It may appear that 300 generations is too many. However, if the

precision needed, is relaxed, then good results are obtained sooner.

10 Curve Fitting Using Genetic Algorithms

Table 7. Genetic algorithm runs with bit change mutation.

Coefficients Found by Genetic Algorithm
Using Bit Change Mutation

Best of Each Generation

Coefficient Run I Run 2 Run 3

A 0.500001 0.499999 0.499999
B 0.249999 0.250000 0.250000
C 0.249994 0.250008 0.250004
D 0.750004 0.750000 0.749996
Error 1.73 E-5 1.49 E-5 2.30 E-5

Using an error threshold of 0.001, the best of the generations were
within the threshold as early as generation 115 but no later than the
generation 181. The average of the population yielded similar values in
the generation 300. For these cases, with the weakened threshold, the
values of the coefficients were accurate to about three decimal places
with an average error in the range of l0- 5.

For comparison, Table 7 is a list of the coefficients of three runs
where traditional bit change mutation is used. Here, the results are
nearly as good, and these results were achieved almost as quickly as
with ±e. Organisms whose values were within the 0.001 threshold were
found as early as generation 120, but no later than generation 209. Even
after 300 generations, however, the average of the population had not
converged. In this case, the average coefficient was accurate to only
two decimal places.

After several runs of the genetic algorithm on Problem 2, it became
clear that the curve being searched would fit the data exactly or nearly
so, since the errors were near 0. Because the fitness values of the
organisms were near 0, a variation of the fitness function was tried that
might give better results. After calculating the prefitness function as
before, that value was raised to a small power p (0 < p < 1). The idea
was that organisms near each other in fitness and also with a near-0
prefitness could be separated by this maneuver but not far enough to
make their differences too extreme. This separation effectively distanced
the good organisms from the very good ones (just as scaling does), but
did not place the good organisms too far from the very good ones
and cause them to be eliminated from further selection (as scaling
sometimes does).

Results comparable to those in Table 6 were achieved, and these
values were arrived at sooner than anticipated. These results were reached
in less than 200 generations using p = 0. 1, compared to 300 generations
without p.

Problem 3. This problem is designed to test the genetic algorithm's
ability to fit data to a nonpolynomial. Fit 10 points to the curve
f= A + B tanh(C (x - D)), where tanh is the hyperbolic tangent. (This
function was chosen because it approximates a cross section of the sea
surface topographic expression of a front.) The set of data points and the
curve whose coefficients are being searched for are given in Figure 6.

Using information that can be gained from knowledge of the data,
the conclusions were that A was between -0.05 and 0.0, B was between

Curve Fitting Using Genetic Algorithms 11

0.2

0.2 -

0.1

0- 0

-0.1-

-2-Figure 6. The curve f = A + B-0.2 0 6 8 tanhIC (x- D)] which best fits the data0 20 40 60 80 100 set from Problem 3.

Table 8. Genetic algorithm runs for nonpolynomial data.

Coefficients Found by Genetic Algorithm
Using Narrow Intervals

Best of Each Generation

Coefficient Run I Run 2 Run 3

A -0.025789 -0.025789 -0.025789
B -0.162363 -0.162363 0.162363
C -0.184057 -0.184053 0.184053
D 58.8945 58.8944 58.8945 0
Error 0.002728 0.002728 0.002728

0 and 0.2, C was between 0 and 1, and D was between 55 and 60. Begin
with intervals for A, B, and C of [-1,1]. Broaden the range somewhat
to allow for errors. Values of [55,60] were used for !D. The results from
the genetic algorithm are given in Table 8. Note that the values for the
coefficients B and C in run 3 are the opposite sign of those in runs 1
and 2. This opposition can be explained by using the property of hyperbolic
tangents: -tanh(x) = tanh(-x).

When small intervals are used for the domain of each coefficient,
convergence is faster and more accurate. The ranges of the coefficients can •
be derived from the function itself, from knowledge about the problem
from which the function arose, and from experimentation. All three
techniques were used in choosing the intervals for the functions found
here. Because of the size, the interval was much larger (100), and the
genetic algorithm described above was adjusted by increasing the length
of a chromosome to maintain the same level of accuracy. The genetic
algorithm was also allowed to run for additional generations (500) to
allow it more time to converge. The results were comparable (Table 9).

Problem 4. The nine data points displayed in Figure 7 lie on the
curve, f= Ax 4 + Bx 3 + Cx 2 + Dx + E.

As expected, when the boundary interval was large the degree of 0
accuracy was much less than when it was small. An alternate approach
to Problem 4 exploited this situation. Initially, large boundaries were
chosen for the coefficients. Once convergence was achieved, the genetic
algorithm was redone with smaller intervals attained from the earlier
runs. For instance, [-10, 10] was initially chosen as the boundary inter-
val for the coefficient A. After several runs, it became clear that A was
in the interval [0.20, 0.30]. By repeating the genetic algorithm with
these smaller intervals, a good degree of accuracy was obtained. The

12 Curve Fining Using Genetic Algorithms

20 -

10

0

-10
Figure 7. Quartic polynomial which best
fits the data set from Problem 4. -4 -2 0 2 4

Table 9. Runs for Problem 3 with wider intervals and more
generations.

Coefficients Found by Genetic Algorithm
Using Wider Interval

Best of Each Generation

Coefficient Run 1 Run 2 Run 3

A -0.025792 -0.025793 -0.025785
B -0.162351 -0.162359 0.162362
C -0.184088 -0.184062 0.184058
D 58.8448 58.8942 58.8946
Error 0.002728 0.002728 0.002728

Table 10. Genetic algorithm runs for Problem 4. Earlier
experiments allowed determination of narruw boundary
intervals.

Quartic Polynomial Coefficient Result

Best of Each Generation

Coefficient Run 1 Run 2 Run 3

A 0.257026 0.257026 0.257033
B -0.047801 -0.047803 -0.047792
C -1.50491 -1.50492 -1.50500
D 1.04891 1.04891 1.04833

E 0.185663 0.185687 0.185813
Error 0.967972 0.967972 0.967972

results of this experiment are listed in Table 10. Similar results could
probably have been achieved by allowing the original genetic algorithm
to run longer and by using longer chromosomes. Further experimenta-
tion will determine which approach yields better results.

Problem S. This last problem is the one that motivated this work.
Without developing the source of the problem (Lybanon et al., 1990),
take the function f= A tanh(B (x - D - E)) - F tanh(C (x - E)) + G
along with 100 data points in D. The methods described above were
employed to find the seven coefficients that support the best fit. As
with Problem 4, the desired accuracy could not be achieved using large
intervals--those whose approximate length was 100. However, the range
of possible solutions was reduced considerably. As the genetic algorithm

Curve Fitting Using Genetic Algorithms 13

was repeated with the same parameters, but with the much smaller
intervals, the optimal values that were sufficiently accurate could be
focused on.

Genetic algorithms form a basis for another method of curve fitting. VI. Conclusions/Summary
Once the genetic algorithm testbed is built, only minor modifications in
the parameters and strategies are needed to achieve a fair degree of
accuracy. When some knowledge of the coefficients is available, the
genetic algorithm can quickly and accurately determine the optimal fit.
When there is little knowledge, some experimentation with the genetic
algorithm may be necessary to achieve a high degree of accuracy. In
any case, genetic algorithms were used successfully to fit curves to
data.

Baker, J. E. (1987). Reducing bias and inefficiency in the selection VII. References
algorithm. Genetic Algorithms and Their Applications: Proceedings of
the Second International Conference on Genetic Algorithms, 14-21.

Calman, Jack (1987). Introduction to sea-surface topography from
satellite altimetry. Johns Hopkins APL Technical Digest 8(2):206-21 1.

Carruana, R. A. and J. D. Schaffer (1988). Representation and hidden
bias: Gray vs. binary coding for genetic algorithms. Proceedings of the
5th International Conference on Machine Learning, 153-161.

Daniel, Cuthbert and Fred S. Wood (1980). Fitting Equations to Data,
2nd Ed. New York (NY): John Wiley & Sons.

Davis, L. (Ed.) (1987). Genetic Algorithms and Simulated Annealing. 0
London (England): Pitman.

De Jong, Kenneth A. (1975). An Analysis of the Behavior of a Class
of Genetic Adaptive Systems. Ph.D. dissertation, University of Michigan.
Dissertation Abstracts International 36(10):5104B.

Eshelman, Larry J., Richard A. Carvana, and David J. Schaffer (1989).
Biases in the crossover landscape. Proceedings of the Third lnternationc!
Conference on Genetic Algorithms, San Mateo (CA): Morgan Kaufmann,
10-20.

Francis, J. G. F., (1961/62). The QR transformation - a unitary analogue
to the LR transformation, Parts I & 2. Comp. Journal 4:265-271 and
332-345, 0

Goldberg, David E. (1989). Genetic Algorithms in Search, Optimization,
and Machine Learning. Reading (MA): Addison-Wesley.

Grefenstette, John J. (1986). Optimization of control parameters
of genetic algorithms. IEEE Transactions on Systems, Man and
Cybernetics SMC- 16(1): 122-128. •

Guest, P. G. (1961). Numerical Methods of Curve Fitting. Bristol
(England): Cambridge University Press.

Holland, John H. (1975). Adaption in Natural and Artificial Systems.
Ann Arbor (MI): University of Michigan Press.

Lybanon, Matthew, Richard Crout, Conrad Johnson, and Pavel Pistek
(1990). Operational altimeter-derived oceanographic information: The
NORDA GEOSAT ocean applications program, Journal of Atmospheric
and Oceanic Technology 7(3):357-376.

14 Curve Fitting Using Genetic Algorithms

Lybanon, Matthew, D. R. Johnson, and R. S. Romalewski (1988).
Separation of the mean Gulf Stream topography from an altimeter-
derived reference surface. EOS Transactions, American Geophysical
Union 69(44):1281.

Lybanon, Matthew and Richard L. Crout (1987). The NORDA GEOSAT
ocean applications program. Johns Hopkins APL Technical Digest
8(2):212-218.

Schaffer, J. David (1985). Multiple objective optimization with vector
evaluated genetic algorithms. Proceedings of an International Conference
on Genetic Algorithms and Their Applications, 93-100.

Siedlecki, W. and J. Sklansky (1989). A note on genetic algorithms
for large-scale feature selection. Pattern Recognition Letters
10(5):335-347.

Suh, Jung Y. and Dirk Van Gucht (1987). Incorporating information
into genetic search. Genetic Algorithms and Their Applications:
Proceedings of the Second International Conference on Genetic
Algorithms, 100-107.

Whitley, D. and D. Shaner (1988). Representation Issues in Genetic
Algorithms. Department of Computer Science, Colorado State University,
Technical Report #CS-88-102.

Curve Fitting Using Genetic Algorithms 15

Distribution List

Applied Physics Laboratory Naval Air Systems Command HO Naval Surface Warfare Center Det
Johns Hopkins University Washington DC 20361-0001 Silver Spring
Johns Hopkins Road Attn: Commander White Oak Laboratory
Laurel MD 20707 10901 New Hampshire Ave.

Naval Civil Engineering Laboratory Silver Spring MD 20903-5000
Applied Physics Laboratory Port Hueneme CA 93043 Attn: Officer in Charge
University of Washington Attn: Commanding Officer Library
1013 NE 40th St.
Seattle WA 98105 Naval Coastal Systems Center Naval Surface Warfare Center

Panama City FL 32407-5000 Dahlgren VA 22448-5000Applied Research Laboratory Attn: Commanding OfficerAtnCo m de
Pennsylvania State University Attn: Commander
P.O. Box 30 Naval Eastern Oceanography Center Naval Underwater Systems Center
State College PA 16801-0030 McAdie Building, U117 Newport RI 02841-5047

Applied Research Laboratories Naval Air Station Attn: Commander
University of Texas at Austin Norfolk VA 23511
P.O. Box 8029 Attn: C. A. Weigand Naval Underwater Systems Center Det
Austin TX 78713-8029 Naval Facilities Engineering New London Laboratory

Assistant Secretary of the Navy Command HO New London CT 06320
Research, Development & Acquisition 200 Stovall St. Attn: Officer in Charge
Navy Department Alexandria VA 22332-2300
Washington DC 20350-1000 Attn: Commander Office of Naval Research

800 N. Quincy St.
Chief of Naval Operations Naval Oceanographic Office Arlington VA 22217-5000
Navy Department Stennis Space Center MS 39522-5001 Attn: Code 10D/10P, Dr. E. Silva
Washington DC 20350-2000 Attn: Commanding Officer Code 112, Dr. E. Hartwig
Attn: OP-71 Library Code 12

OP-987 W. Austin, Code MTA Code 10
L. J. Bernard, Code TD

Chief of Naval Operations A. A. Johnson, Code MT Office of Naval ResearchOceanographer of the Navy DetachmentU.S. Naval Observatory Naval Oceanography Command Stennis Space Center MS 39529Washington DC 20392-1800 Stennis Space Center MS 39529-5000 Attn: E. D. ChaikaAttn: 0o -096 Attn: Commander
OP-0961B Dr. D. Durham Office of Naval ResearchDr. R Program Integration Dept. ONR European OfficeDr. R. Feden Dr. . F. Moersdorf PSC 802 Box 39

David W. Taylor Naval Research Center Space Oceanography Programs FPO AE 09499-0700
Bethesda MD 20084-5000 Attn: Commanding Officer
Attn: Commander Naval Oceanographic & Atmospheric

Research Laboratory Office of Naval Technology
Defense Mapping Agency Atmospheric Directorate 800 N. Quincy St.
Systems Center Monterey CA 93943-5006
8613 Lee Hwy. Attn: Code 400 Arlington VA 22217-5000
Mail Stop A-13 Dr. P. Tag Attn: Code 20, Dr. P. Selwyn
Fairfax VA 22031-2137 Dr. J. Hovermale Code 228, Dr. M. Briscoe
Attn: Code PRN Code 234, Dr. C. Votaw

Naval Oceanographic & Atmospheric
Fleet Antisub Warfare Tng Ctr-Atl Research Laboratory Planning Systems, Inc.
Naval Station Stennis Space Center MS 39529-5004 PSI Science Center
Norfolk VA 23511-6495 Attn: Code 100 115 Christian Lane
Attn: Commanding Officer Code 105 Slidell LA 70458

Fleet Numerical Oceanography Center Code 115 Attn: Dr. R. L. Crout,

Monterey CA 93943-5005 Code 125L (10) Senior Scientist

Attn: Commanding Officer Code 125P Planning Systems, Inc.
M. Clancy Code 200 Naval Systems Division
J. Cornelius Code 300 7925 Westpark Drive

Louisiana State University Lybanon (40) McLean VA 22102

Department of Computer Science Naval Ocean Systems CenterAttn: Dr. E. MolinelliBato Roge om~terSan ieg Sytem CeterDirector. Environmental
Baton Rouge LA 70803-4020 San Diego CA 92152-5000 Acoustic Group
Attn: Dr. S. S. lyengar Attn: Commander

Loyola University Scripps Institution of Oceanography6363 St. Charles Ave. Naval Postgraduate School University of California
New Orleans LA 70118 Monterey CA 93943 291 Rosecrans St.
Attn: Dr. K. W. Messa (40) Attn: SuperintendentSan Diego CA 92106-3505

Dept. of Mathematical Sciences Dr. Chin-Hwa Lee,
Associate Professor, Space & Naval Warfare Sys Coin

NOAA Dept. of Electrical & Computer Director of Navy Laboratories
Rockville MD 20852 Engineering SPAWAR 005
Attn: Dr. R. E. Cheney, N/CG11 Washington DC 20363-5100

Naval Research Laboratory Attn: Commander
National Ocean Data Center Washington DC 20375
1825 Connecticut Ave., NW Attn: Library (2) Space & Naval Warfare Sys Com
Universal Bldg. South, Rm. 206 R. P. Shumaker Crystal Park 5, Room 301
Washington DC 20235 2451 Crystal Drive

Naval Air Development Center Naval Sea Systems Command HO Arlington VA 22202
Warminster PA 18974-5000 Washington DC 20362-5101 Attn: CDR P. Ranelli, PMW-165
Attn: Commander Attn: Commander CAPT J. Jensen

Tulane University University of Rhode Island Woods Hole Oceanographic Institution

Dept. of Computer Science Graduate School of Oceanography P.O. Box 32
New Orleans LA 70118 Narragansett RI 02882 Woods Hole MA 02543
Attn: Dr. B. P. Buckles Attn: Dr. P. Cornillon Attn: Director

Dr. F. E. Petry University of Tennessee

University of Miami Computer Science Department
RSMAS Knoxville TN 37996-2100
Miami FL 33149-1098 Attn: Dr. M. G. Thomason
Attn: Dr. 0. B. Brown Room 107, Ayres Hall

Dr. D. B. Olson Dr. M. M. Trivedi
Electrical and Computer

University of North Carolina Engineering Dept.,
at Greensboro Ferris Hall
College of Arts and Sciences
Greensboro NC 27412-5001
Attn: Dr. S. Lea

383 Bryan Building
Dept. of Mathematics

0

Form ApprovedREPORT DOCUMENTATION PAGE J OMB No. 0704-0188

Public reporting burden for this collecion of information is estimated to average 1 hour per response, including the time for reviewing nstructions. searching existing data sources
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any otner aspect of
this collection of information including suggestions for reducing this burden, to Washington Headquarters Services. Directorate for Information Operations and Reports. 1215 Jefferson
Davis Highway. Suite 1204, Arlington. VA 22202-4302. and to the Office of Management and Budget. Paperwork Reduction Project 10704-0188). Washington. DC 20503

1. Agency Use Only tLeave blank). 2. Report Date. 3. Report Type and Dates Covered.

October 1991 Final
4. Title and Subtitle. 5. Funding Numbers.

Work Unit No
Curve Fitting Using Genetic Algorithms 93210T 13210X

Progfwn Element No.
0603704N 0602435N

6. Author(s). Project No00101 3587
Task No

K. Messa and M. Lybanon 100
Accession No.

DN394464 DN256010
7. Performing Organization Name(s) and Address(es). 8. Performing Organization

Report Number.

Naval Oceanographic and Atmospheric Research Laboratory
Ocean Science Directorate NOARL Report 18
Stennis Space Center, Mississippi 39529-5004

9. Sponsoring/Monitoring Agency Name(s) and Address(es). 10. SponsoringlMonitoring Agency

Space and Naval Warfare Systems Command Report Number.

Washington, DC.

Naval Oceanographic and Atmospheric Research Laboratory
Ocean Science Directorate
Stennis Space Center, MS 39529-5004

11. Supplementary Notes.

*Loyola University, Department of Mathematical Sciences, New Orleans, LA 70118

12a. DistributionlAvailabillty Statement. 12b. Distribution Code.

Approved for public release; distribution is unlimited. Naval Oceanographic and
Atmospheric Research Laboratory, Stennis Space Center, Mississippi 39529-5004.

13. Abstract (Maximum 200 words).

Genetic algorithms are search techniques based on the mechanics of natural selection. They have been used successfully in many
applications because of their robustness and because of their ability to search in a noisy problem space. In particular, genetic algorithms
are used in curve-fitting. The genetic algorithm selects the coefficients of a particular curve that most closely matches a given set of data.

Candidate solutions are vectors of real numbers that represent the coefficients of the curve to be modeled. Thus, every candidate
solution corresponds to a new function. As such, each candidate solution is evaluated using the sum of the squares of the residuals.
The evaluation of each of these curves with respect to its fit of the data guides the genetic algorithm toward the solution with the
greatest merit.

Several examples of the application of genetic algorithms to curve-fitting problems are presented. Convergence to the optimal solu-
tion is rapid when knowledge of the coefficients is available. When little is known about the coefficients, a degree of experimentation
helps obtain the optimal solution.

14. Subject Terms. 15. Number of Pages.

remote sensing, artificial intelligence, lagrangian drifter, microbubbles, satellite data 18

processing, environment. information extraction 16. Price Code.

17. Security Classification 16. Security Classification 19. Security Classification 20. Limitation of Abstract.
of Report. of This Page. of Abstract.

Unclassified Unclassified Unclassified Same as report

NSN 7540-01-280-550M Standard Form 298 ,Rev 2-891
9esc,,tioc AN& sic Z39-18

